Rare earths increasingly in the picture

But where do they rank among other metals regarding ecotoxicity and occurrence in the environment?

ARCADIS

Nele Deleebeeck, Andreas Fettweis, Laura Lefèvre, Michiel Claessens

SETAC EU 33rd Annual Meeting Dublin, Ireland

Rare earths increasingly in the picture But where do they rank among other metals regarding ecotoxicity and occurrence in the environment?

Franclum	nd Radium	Actinium	Rutherfordium	Dubnium	Sg Seaborglum	DII Bohrium	Hassium	IVIL Meitnerium	DS Darmstadtium	Rg Roentgenium		Nihonium	Flerovium	Moscovium	LV Livermorium	Tennessine	Og Oganesson
⁸⁷ Fr	⁸⁸ Ra	89 AC	¹⁰⁴	¹⁰⁵ Db	106 © a	¹⁰⁷ Bh	¹⁰⁸ Hs	¹⁰⁹ Mt	110 Do	111 Da	112 Cn	¹¹³ Nh	114 FI	115 MC	116	¹¹⁷ Ts	118
Caesium	Barium	Lanthanum	Hafnium	Tantalum	Tungsten	Rhenium	Osmium	Iridium	Platinum	Gold	Mercury	Thallium	Lead	Bismuth	Polonium	Astatine	Radon
Cs	Ba	La	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
Rubidium	Strontium	Yttrium 57	Zirconium	Niobium	Molybdenum 74	Technetium	Ruthenium	Rhodium	Palladium 78	Silver	Cadmium	Indium	тіл 82	Antimony 83	Tellurium 84	lodine 85	Xenon 86
Rb	Sr	Υ	Zr	Nb	Mo	Тс	Ru	Rh	Pd Palladium	Ag	Cd	In	Sn	Sb	Те		Xe
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Potassium	Calcium	Scandium	Titanium	V Vanadium	Chromium	Manganese	Iron	Cobalt	Nickel	Copper	Zinc	Gallium	Germanium	Arsenic	Selenium	Bromine	Krypton
K	Ca	Sc	Ti	V	24 Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Sodium	Magnesium	21	22	23	24	25	26	27	28	29	30	Aluminium 31	Silicon	Phosphorus 33	sulfur 34	Chlorine 35	Argon 36
Na	Mg											AI	Si	P	S	CI	Ar
11	12											13	14	15	16	17	18
Lithium	D C Beryllium											D Boron	Carbon	Nitrogen	Oxygen	Fluorine	Neon
Li	Be											B	C	Ń	Ô	F	Ne
Hydrogen 3	4											5	6	7	8	9	Helium
Н																	He
																	2

58	59	60	61	62	63	64	65	66	67	68	69	70	71
Ce	Pr	Nd		Sm		Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
Cerium	Praseodymium	Neodymium	Promethium	Samarium	Europium	Gadolinium	Terbium	Dysprosium	Holmium	Erbium	Thulium	Ytterbium	Lutetium
90	91	92	93	94	95	96	97	98	99	100	101	102	103
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
Thorium	Protactinium	Uranium	Neptunium	Plutonium	Americium	Curium	Berkelium	Californium	Einsteinium	Fermium	Mendelevium	Nobelium	Lawrencium

Introduction

The Rare Earth Consortium was established in May 2008 in view of the EU REACH duties of rare earth manufacturers and importers.

Rare Earth Compounds Reach Consortium | (rare-earth-consortium.eu)

Arcadis is **Consortium manager** for the Rare Earth Consortium and also **provides scientific support** for REACH dossiers.

Under **EU REACH**, dossiers have been submitted for **50 rare earth compounds** covered under the Consortium, for 25 of which Arcadis has provided scientific support.

A lot of data have been generated and evaluated, providing **a substantial knowledge base**

Substances covered by the Rare Earth Consortium

YTTRIUM	LANTHANUM	CERIUM	PRASEODYMIUM	NEODYMIUM	SAMARIUM
(0) metal					
(III) oxide	(III) carbonate	(III) carbonate	(III) carbonate	(III) carbonate	(III) oxide
(III) oxalate	(III) oxide	(III) oxalate	(III,IV) oxide	(III) oxide	(III) Reaction mass
(III) fluoride	(III) hydroxide	(III) fluoride	(III) nitrate	(III) hydroxide	of carbonates of Eu Gd Sm
(III) silicate,	(III) fluoride	(III) nitrate	(III) chloride	(III) fluoride	
Yb-doped	(III) acetate	(III) chloride		(III) nitrate	LUTETIUM
(III) nitrate	(III) nitrate	(IV) oxide	DYSPROSIUM	(III) chloride	(III) oxide
(III) chloride	(III) chloride	(IV) hydroxide	(III) oxide		(III) oxide
		(IV) nitrate	(III) nitrate	YTTERBIUM	silicate
EUROPIUM	GADOLINIUM	(IV) ammonium		(III) oxide	Silloute
(III) oxide	(III) oxide	nitrate	ERBIUM		
	(III) oxalate		(III) oxide		
	(III) nitrate	TERBIUM			
		(III,IV) oxide			

Uses and future needs

Clean and renewable energy

(e.g., permanent magnets used in wind turbine generators)

Hybrid and electric vehicles (e.g., battery and various other applications)

Catalysts (industrial, automotive)

Healthcare (e.g., magnets, imaging, cancer treatment, ...)

Electronics and communications

Personal technology

(e.g., rechargeable batteries)

- Demand can be expected to increase over time
- Some are to be considered as Critical Raw Materials

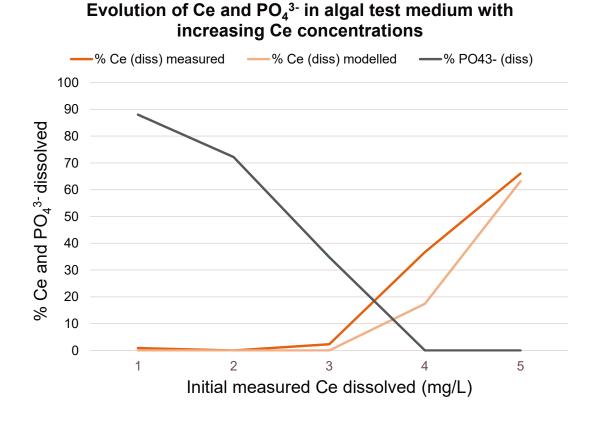
Aquatic ecotoxicity

Data availability

(based on currently available data in the REACH dossiers, for algae see further)

- 1. For most REEs covered by the RE Consortium, reliable **acute data** are available for **fish and aquatic invertebrates**
 - La, Ce, Nd, Pr, Gd, Dy, Y
- 2. Only limited reliable **long-term data** available at time of REACH dossier generation
 - La, Nd, Dy
- 3. General 'rules' followed for testing
 - Semi-static testing
 - Where necessary, testing at low pH to keep stable concentration series (increasing pH results in increasing precipitation of RE hydroxides, carbonates, ...)
 - All effect concentrations based on mean-measured dissolved REEs

Aquatic ecotoxicity


- Acutely, fish typically most sensitive
- Long-term, much less difference between fish and aquatic invertebrates, but:
 - Not much data available yet
 - Different test medium composition (literature data) hampers drawing conclusions

Endpoint	Lowest of lowest effect concentrations (all elements)	Highest of lowest effect concentrations (all elements)
Acute fish (LC50)	0.13	0.93
Long-term fish (EC10)	0.035	
Acute invertebrates (EC50)	0.49	6.9
Long-term invertebrates (EC10)	0.0057	0.09

ACR based on data with same test organism in similar test medium \rightarrow only available for Nd: ACR = ca. 25 for rainbow trout and ca. 110 for *Daphnia magna*

Aquatic ecotoxicity Algae

- To test inherent toxicity of rare earths, a phosphate source should be added that is available to algae but resists complexation by the rare earths
- Initial REACH testing at CROs: inorganic phosphate used → only indirect effect (phosphate deprivation) tested
- Later REACH testing at CROs: canceled as CROs indicated not to be able at that time to replace phosphate source

Current PNECaquatic freshwater

- Not enough data to derive PNEC using SSD (species sensitivity distribution) method
- Assessment factor (AF) method
 used
- Algae data (ErC50 and ErC10) excluded (but available data not critical)

© Arcadis 2023

REE	PNECaquatic (µg/L)	AF
Lanthanum	0.6	50
Cerium	0.13	1000
Praseodymium	0.71	1000
Neodymium	3.5	10
Gadolinium	0.43	1000
Dysprosium	0.11	50
Erbium	0.13	1000
Lutetium	2.25	1000
Yttrium	0.2	1000

Margin of improvement for Nd by generation of longterm data with the same test organisms in the same test media was only a factor of 4!!!

Based on acute data, PNEC = $0.87 \mu g/L$

Impact of data from recent / ongoing research projects

- Acute and long-term data for fish and aquatic invertebrates in line with expectations based on previously generated / published data
- Increasing insight in effect of water chemistry – e.g., DOC, Ca, Na, K, SO4, pH, …

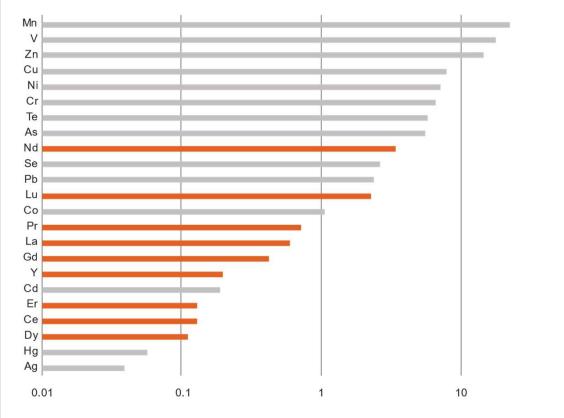
Natural Resources Canada

- ECOTREE
- PANORAMA
- REY Elementary

Not all data published / accessible yet

Major difference = algae data

- Use of organically complexed phosphate source to avoid REPO₄ precipitation (e.g., β-glycerophosphate, glucose-1-phosphate, cyclic adenosine monophosphate, ...)
- Effect concentrations for 'direct effects' of some studies are unexpectedly low and might even LOWER PNECs

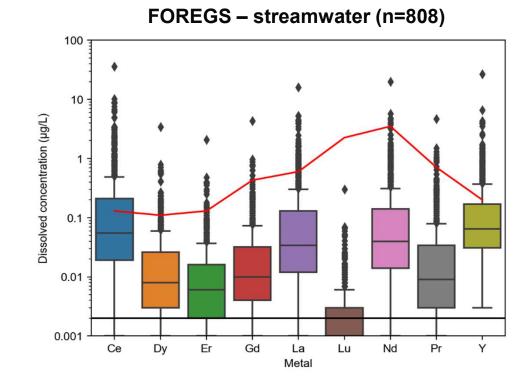

→ Thorough assessment of results required

- → Difference explained due to effect of water chemistry? (e.g., soft water testing by NRC)
- → Could the medium adjustment have facilitated RE uptake and toxicity?

100

PNECaquatic compared to other metals

- **REE PNECs** are **at the lower end**
- Even with improvement of ecotoxicological dataset, expected to stay more or less in same position (factor 4 → max 10 relief expected)

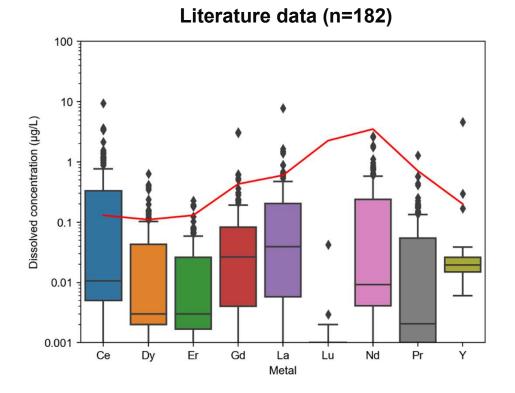


PNECaquatic, freshwater (µg/L)

PNECaquatic vs measurements in the aquatic environment?

Databases

- WATERBASE → No data available
- FOREGS (focus on pristine areas)
 → Data for REEs included


PNEC vs measurements For all REEs, PNECaq < max For Ce and Y, PNEC also < 90th pct

PNECaquatic vs measurements in the aquatic environment?

Literature data

- Screening only
- 5 studies: Kulaksiz and Bau (2007, 2011, 2013), Pignotti et al. (2017), Parent et al. (2018)
- Locations: Germany, Netherlands, France, Italy
- Includes river samples up and downstream from WWTPs
- Measurements not so much different from what is in FOREGS

© Arcadis 2023

PNEC vs measurements For most but not all REEs, PNECaq < max For Ce only, PNEC also < 90th pct

Potential contribution to metal mixture toxicity in the aquatic environment (screening)

Risk quotients (RQ) – mixture assessment based on toxic unit approach

$$RQ_{total} = \sum_{i}^{n} \frac{concentration_{i}}{PNEC_{i}}$$

for all metals *i* considered

Contribution of rare earths to total risk quotient

 $\frac{RQ_{rare\ earths}}{RQ_{other\ metals} + RQ_{rare\ earths}}$

Rare earths: Y, La, Ce, Pr, Nd, Gd, Dy, Er, Lu (all those for which PNECaquatic available) Other metals: Ag, As, B, Ba, Cd, Co, Ce, Cu, Ge, Li, Mn, Mo, Ni, Pb, Sb, Se, Te, Ti, V, W, Zn

© Arcadis 2023

Various limitations:

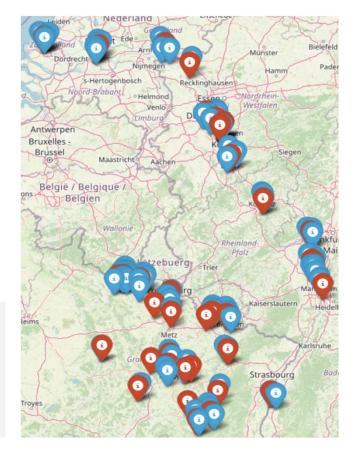
- No account taken of added risk approach
- No bioavailability corrections
- Concentration addition is a (worst-case) assumption
- For various metals, including REEs, still margin of improvement on PNECs
- For some REEs, no PNECs available yet

Potential contribution to metal mixture toxicity

Useful sources need to report measurements for both REEs and other metals!

Literature data

Typically, no joint reporting of measurements for REEs and other metals (or sites with atypically high concentrations for some of the other metals)


WATERBASE

Includes more anthropogenically affected environments (<-> FOREGS) \rightarrow No rare earth measurements

Match sampling locations

WATERBASE monitoring stations (blue) \rightarrow for metal concentrations other than rare earths Literature data with coordinates (red) \rightarrow rare earth concentrations

- · Based on distance and sampling time: 13 matches found
- · However, matched WATERBASE stations did not have sufficient data for other metals

Potential contribution to metal mixture toxicity

Exercise based on FOREGS data

- MEDIAN contribution of 9 REEs to the total risk quotient of 30 metals was found to be ca. 25% with current PNECs
- Not surprisingly, since this is 1/3 of the total number of metals considered and PNECs are relatively low

Impact of refinement of hazard assessment?

- Increase of PNECs (only those currently derived using AF of 1000) by:
 - Factor 2 \rightarrow median contribution ca. 16% \checkmark
 - Factor 5 \rightarrow median contribution ca. 10% \checkmark
 - Factor 10 \rightarrow median contribution ca. 7% \downarrow

Conclusion

- REEs are a large group of elements, all with relatively low PNECs, therefore, the contribution may be significant
- However, a lot is NOT SUFFICIENTLY KNOWN yet, such as actual bioavailability and effect of water chemistry on ecotoxicity, ...

Toxicity to sediment and soil organisms

- Much less data available
- Current PNECs for sediment and soil only derived for Y, La, Ce

REE	PNECsed mg/kg dw	Derivation method	PNECsoil mg/kg dw	Derivation method
Yttrium	36.4	Eq. part.	4.36	Eq. part.
Lanthanum*	13.2	AF 100	0.93	AF 50
Cerium	17.1	Eq. part.	0.451	Eq. part.

*For lanthanum, both AF method and eq. part. were applied, with very similar results!

PNECsed vs measurements in the environment

FOREGS – European stream sediment (mg/kg)

REE	Ν	Min	Q50	Q90	Max	PNEC
Yttrium	848	1.3	25.7	46.5	426	36.4
Lanthanum	848	1.3	32.5	63.1	553	13.2
Cerium	848	2.2	66.6	135	1080	17.1

PNEC < 90th pct for Y PNEC < 50th pct for La and Ce → Added risk approach to be followed

PNECsoil vs measurements in the environment

GEMAS – European agricultural soil and grassland (mg/kg)

REE	Soil	Ν	Min	Q10	Q50	Q90	Max	PNEC
Yttrium	Agric.	2108	0.23	2.3	6.7	13	65	4.36
	Grass.	2024	0.23	2.2	6.5	14	77	
Lanthanum	Agric.	2108	1	6.1	14	26	109	0.93
Lanthanum	Grass.	2024	0.93	5.4	14	25	230	
Cerium	Agric.	2108	1.6	11.9	28.4	51.4	265	0.451
	Grass.	2024	1.7	10.5	27.1	48.4	272	

PNEC < 50th pct for Y PNEC ≤ min for La and Ce → Added risk approach to be followed

Conclusions

- Rare earths have relatively low PNECs.
- There is margin of improvement for PNECs, by generation of more data.
- **PNECaquatic typically > 90th pct measured in EU surface waters** (except for Ce and/or Y)
- PNECsed and PNECsoil are typically < 90th pct measured in EU sediments and soils → added risk approach to be considered?
- With current PNECs, contribution of the REEs to potential mixture toxicity in the aquatic environment assuming as a worst case, concentration additivity – may not be negligible, especially considering:
 - Current low PNECs
 - Big group of elements compared to total number of metals with known significant hazard in the environment
- Additional investigations required on e.g., actual sensitivity of algae, effect of water chemistry on bioavailability in the environment, ...

Thank you!

Rare Earth Compounds Reach Consortium | (rare-earth-consortium.eu)

Contact us

Nele Deleebeeck Senior Environmental Risk Assessor nele.deleebeeck@arcadis.com