

Overview of Remediation Technologies

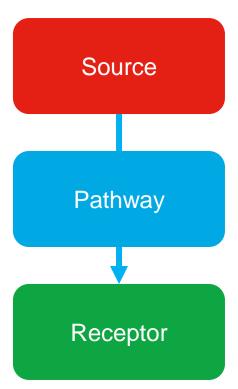
Key Concepts in Technology Selection

Arcadis TechEx, Antwerp, April 2024

Jake Hurst

UK & European Remediation COP Lead UK PFAS Lead jake.hurst@arcadis.com

IMPROVING QUALITY OF LIFE


Remediation Objectives

- 1. What is the remediation is trying to achieve Remediation Objectives.
 - CSM review & data gaps, relevant SPR linkages to manage risk, other outcomes
- 2. Consider wider project / redevelopment objectives
 - manage liability, enable redevelopment, site divestment, geotechnical, sustainability, H&S
- 3. How will objectives be demonstrated multiple 'Lines of Evidence' e.g.
 - Achieve soil & groundwater target concentrations
 - Reduced LNAPL mobility or composition
 - Engineering / process testing (e.g. barriers, covers)
 - Geo-chemical or mass recovery trends
 - Cost benefit or sustainability of continued operation

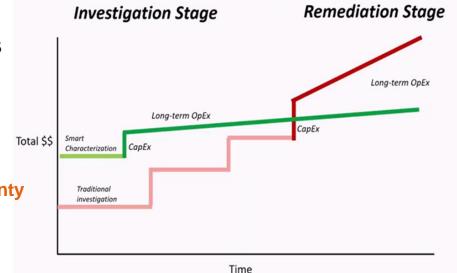
Agree achievable objectives and verification lines of evidence with stakeholders

- Early regulatory engagement proactive client advocacy
- Stakeholders communication explain strategy & constraints

when to stop / transition to secondary technology

ARCADIS

Remediation Feasibility Appraisal


- 1. Identify feasible remediation options for each relevant pollutant linkage risk based approach;
 - Understand key advantages & limitations of each approach 'operating windows'
- 2. Carrying out a detailed evaluation of feasible remediation options to identify the most appropriate option for any particular linkages
 - Technical; (e.g. contaminant type, extent, magnitude, geology, hydrogeology)
 - Operational (e.g. access, H&S, timescales, power, discharge);
 - Commercial (e.g. spread of CapEx & OpEx, technology/vendor status, permits);
 - Liability Management & Sustainability.

Qualitative to Quantitative scoring – agree project specific weightings / priorities

3. Remediation Strategy - address active linkages & project objectives

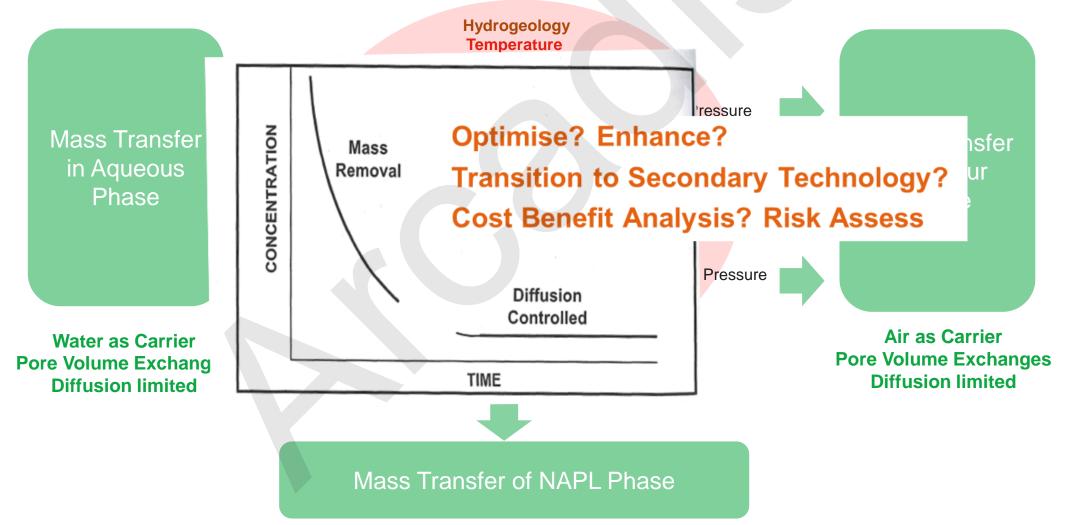
Sufficient data to inform the appraisal?

- Early spend on investigation to reduce overall project costs
- High resolution SI targeting of remediation
- Collect the right data not just more data. Design to manage uncertainty
- Pilot Testing & Treatability Studies

Overview of Remediation Technologies

Saturated Zone / Groundwater / NAPL

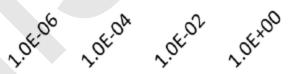
In-situ			Ex-situ		
Biological	Chemical	Physical	Biological	Chemical	Physical
Passive MethodsMNANSZDPhytoremediation	In Situ Chemical Oxidation	Thermal - Conductive, electric resistive, steam - Smoldering	Constructed Wetlands	Constructed Wetlands	Groundwater Pumping & Multiphase Extraction - Sorption - Air stipping
Enhanced Bioremediation - ERD - Aerobic biooxidation - O ₂ Release Agents	In Situ Chemical Reduction - ZVI - Chemical Reduction /	Stabilization / Solidification / Sorption PRBs, activated carbon	Bioreactors - Activated sludge / fluidized beds	Advanced Oxidation Processes - peroxide, ozone - UV Photolysis Electrochemical	Air Sparging
- Biosparging	precipitation	injection	- Trickle filters		Soil Flushing Surfactant / Solvents
Thermal In Situ Sustainable Remediation (TISR)	Thermal Enhanced Hydrolysis	Physical Barriers		Ion Exchange Precipitation / flocculation	Passive & Active NAPL Skimming

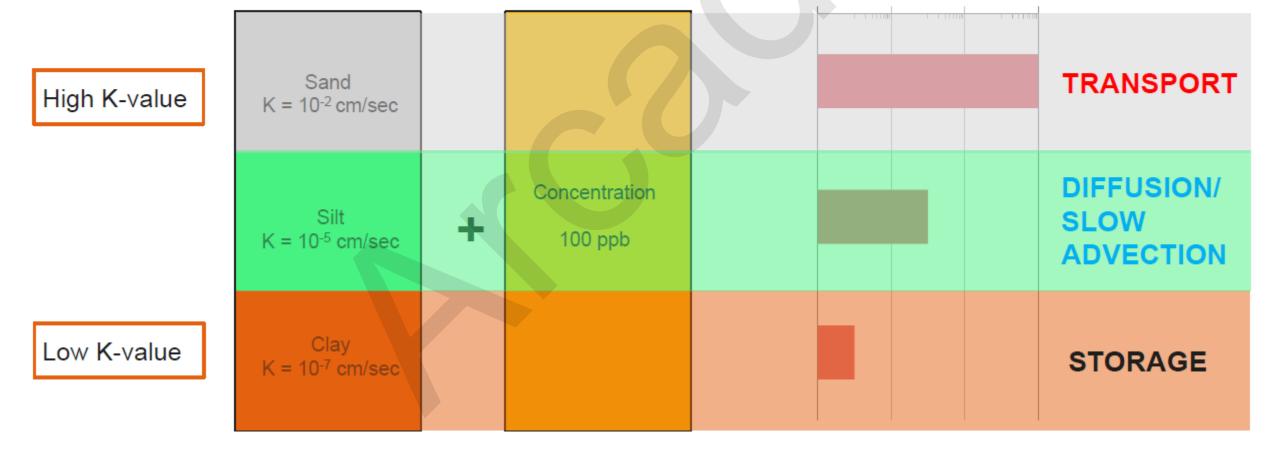

Overview of Remediation Technologies cont...

Unsaturated Zone / Soil In-situ Ex-situ **Biological** Chemical **Physical Biological** Chemical **Physical** Soil Vapour **Excavation & Oxidation / Reduction Biopiles** Windrows, Extraction Oxidation Disposal **Bioventing** - Soil mixing / direct landfarming & force - Soil Mixing - Materials management push injection vent biopile & reuse Thermal ISTD _ Electric Resistive Enhanced Thermal **Electro kinetic** Heating **Chemical Extraction Bioremediation** - LTTD. HTTD - Air/Steam **Separation &** - Acid (metals), Solvent - injection/infiltration of - thermopiles Oxidation (organics) nutrients - smoldering Solidification / **Stabilisation** Soil Washing Soil Flushing / Flooding

Contaminant Properties & Partitioning

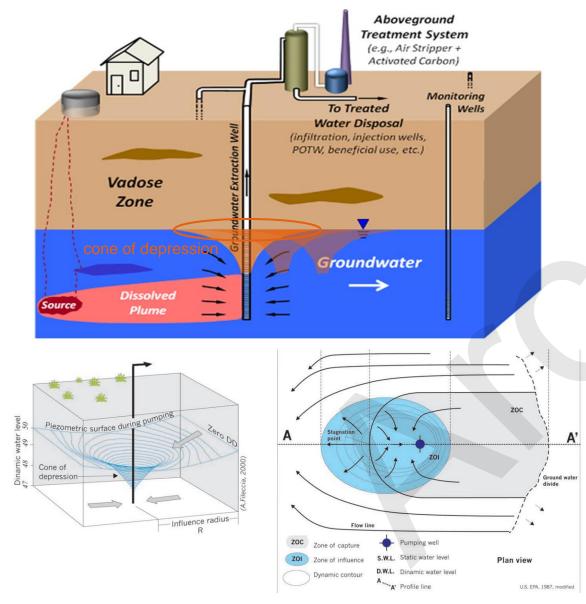
- Chemical structure defines properties understand behaviour to inform remediation approach
- Consider behaviour of complex mixtures

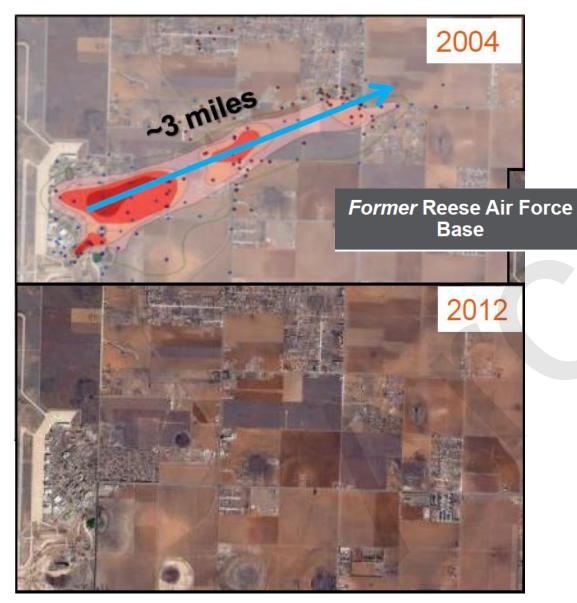


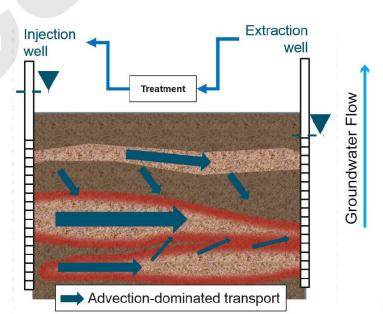

Mass Flux & The 3 Compartment Model

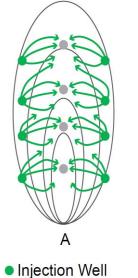
- Contaminant concentrations are only half the story
- Identify horizons of greatest contaminant transport mass flux
- Focus remediation on the mass that matters

Mass Flux $(J_r) = K.C$


ARCADIS


Groundwater & Multiphase Extraction


- Groundwater Pumping
 - Groundwater abstraction via submersible pneumatic, electric or peristaltic pump within a network of wells;
 - Suited to permeable geologies, soluble contaminants and NAPLs Total Fluids Pumps (TFP) or combine with skimming
 - Creates cone of depression influenced by geology, pump rate & depth - overlapping influence radii providing hydraulic containment – source areas, barriers, trenches
 - Above ground separation of water / NAPL and treatment of water
 - Vacuum Enhanced Recovery (VER)
 - (a) Combine GW / LNAPL pumping with Soil Vapour Extraction also termed Dual Phase Extraction (DPE) or Multiphase Extraction
 - (b) Abstraction of GW / LNAPL and vapour at high vacuums via a lance (bioslurping)
 - Application of vacuum enhances contaminant recovery especially in less permeable or heterogeneous geologies;
 - Drawdown of the water table can expose saturated / smear zone to encourage airflow and strip pore entrapped NAPL;
 - More complex systems

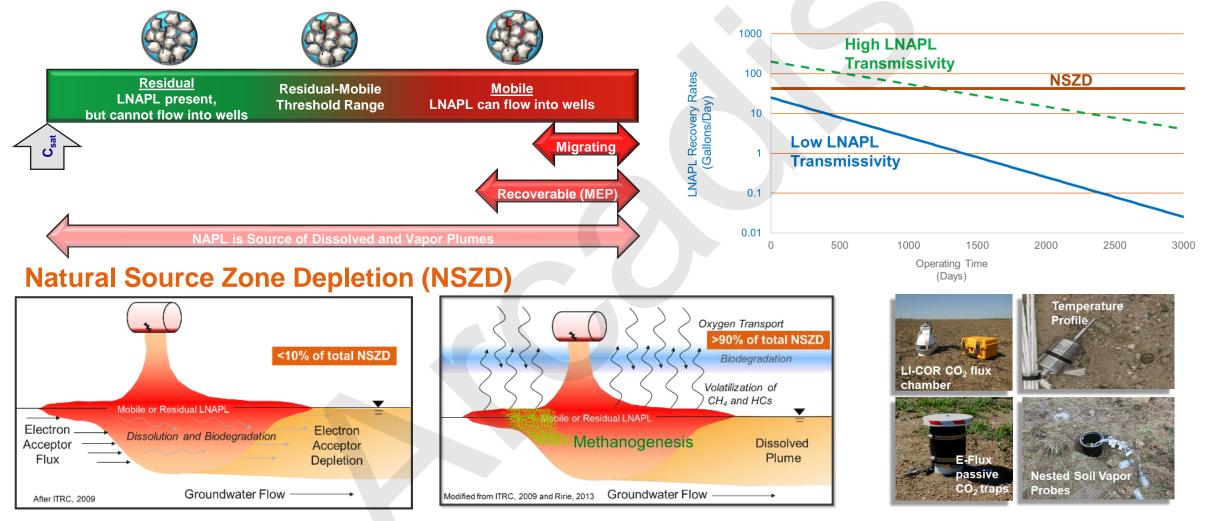


Dynamic Groundwater Recirculation

- Recognises subsurface complexity
- Reinjection at plume periphery flow towards extraction wells
- Enhances advective flushing through preferential & less preferential flow paths
- Dynamic flow regime mimicking natural conditions
- Reduces remediation timeframes through increase pore volume exchanges
 - Can address large plumes

Extraction Well

Air Sparging & Soil Vapour Extraction


- Soil Vapour Extraction (SVE)
 - Apply vacuum to wells across the unsaturated treatment zone create airflow to enhance volatilisation (SVE) and aerobic biodegradation (bioventing). Extracted vapours are treated above ground prior to discharge.
 - Air is a more effective carrier than water expose smear zone
 - Contaminants must be sufficiently volatile and geology suitably permeable. Diffusion limited;
 - Need to consider short circuiting, fluctuating groundwater;

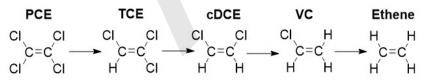
Air Sparging

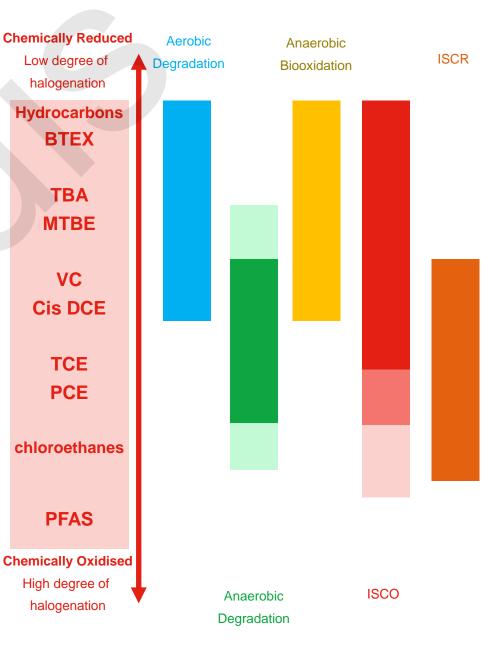
- Inject compressed air into groundwater to strip volatile contaminants - recover & treat via SVE.
- At lower air injection rates, main objective to increase dissolved oxygen & promote aerobic biodegradation (biosparging).
- Suited to permeable geology, watch for low permeability zones, airflow channelling, NAPL
- Assess henry law constant, vapour pressure, half lives
- Manage containment of air, initial mounding lateral spreading.
- Still diffusion limited potential for rebound;


Risk Based LNAPL Management

Active NAPL & Sheen Management

- Hydraulic controls
 - e.g. source, plume or barriers
- Passive skimmers
 - Low risk scenarios limited capacity
- Active skimmers
 - Belt skimmers or skimmer pumps wells or trenches
 - Rapid, low cost, initial mass recovery
- Enhanced NAPL Removal e.g.
 - Surfactant flushing
 - Thermal incl. Low Temperature Enhanced Recovery
- Vadose / Smear Zone SVE
- In Situ Stabilisation
 - Aggressive, source zone mixing e.g. ZVI & bentonite case study
- Sheen Management
 - Physical Barriers & Sorption Depletion Barriers (Oleophlilic Bio Barrier, OBB)



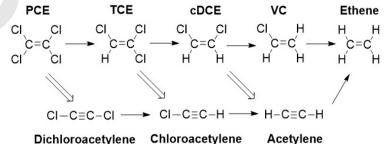

Biological Approaches

- Microbial communities can biodegrade a wide range of organic contaminants under the right conditions
- Aerobic Biodegradation
 - Contaminants are metabolised / cometabolised as food source (electron donor)
 - Terminal Electron Acceptors (TEAs) are reduced sequential energy gain

Dissolved Oxygen > Nitrate > Mn/Fe > Sulfate > Carbon Dioxide

- Anaerobic Biodegradation
 - Chemically oxidised contaminants are respired (electron acceptor) & transformed during metabolism of a food (carbon) source
- Monitored Natural Attenuation (MNA)
 - Track shift in aquifer geochemistry within structured monitoring programme
 - Long term suitable for low risk, but well conceptualised, sites
- Enhanced Natural Attenuation (ENA)
 - Aerobic increase dissolved oxygen sparging air/oxygen, ORA
 - Anaerobic Biooxidation poor distribution & solubility of oxygen, inject sulfate/nitrate solutions
 - Enhanced Reductive Dechlorination (ERD) maintain supply of electron donor e.g. molassess / EVO (biostimulation) to enhance anaerobic biodegradation


Chemical Approaches


Oxidation & Reduction

- In Situ Chemical Reduction (ISCR)
 - e.g. Zero Valent Iron (ZVI) nano, micro, granular
 - In Situ Soil Mixing, PRBs, Injections cased/open hole packers
 - Chlorinated solvents, nitroaromatics, heavy metals (e.g. Cr (VI))
 - Promotes abiotic reduction via $\beta-\text{Elimination}$ avoiding cDCE / VC production
 - Concurrent with ERD fast acting, long lasting, abiotic & biotic degradation pathways, minimise passivation of ZVI,
- In Situ Chemical Oxidation (ISCO)
 - Application of chemical oxidants rapidly destroy wide range of organics
 - Injection via wells, direct push, soil mixing, post excavation contact sport
 - Understand site hydraulics mobile porosity via tracer testing
 - Treatability studies can identify optimum approach & dosage
 - Ideal for high dissolved phase source areas or secondary polish

Hydrolysis

- Some chlorinated alkanes e.g. 1,1,1-TCA, 1,2-DCA and carbon tetrachloride readily undergo hydrolysis at elevated temperatures
- Rapid reduction in half lives with temperature 60-80°C

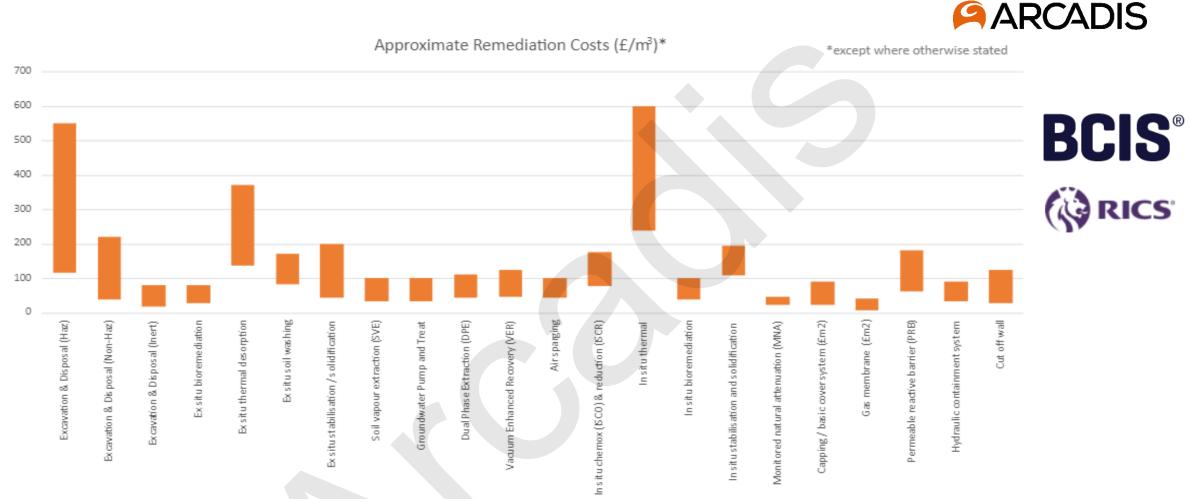
Physical Approaches

Excavation & Disposal

- Suitable for shallow, low permeability hot spots, fast timeframes
- Materials management & tracking is critical
- Maximise on-site reuse segregation, risk based criteria
- Define excavation extents mobile labs, on site testing
- Ex Situ Soil Washing
 - Washing of soils in large plant larger projects / hubs
 - Soluble contaminants in granular soil low proportion fines
 - Waste minimisation contaminants transferred to process water and fines
- In Situ Stabilisation / Solidification
 - Chemical stabilisation & physical solidification to reduce contaminant leaching
 - Suitable for low permeability horizons mixings head or augers
 - Inorganics, metals & some organics combine with oxidants
 - Treatability studies optimum mix design, moisture, long term leaching
- In Situ Sorption
 - Injection of small scale Activated Carbon often alongside organic substrate – sorption & biodegradation
 - Rapid but consider long term flux & DOC
 – sorption capacity is finite may require repeat injections
 – secondary source?

ARCADIS




Critical Thinking in Remediation

Large number of vendors & claims Vs deliver best outcomes to clients

- Understand the risks
- Integrated Design Holistic & Adaptive
- Challenge the status quo, RED
- 1. Does it Work?
- 2. Is it Deployable?
- 3. Is it Cost Effective?

- Remediation costs are highly site and project specific assess with caution
- Consider capital versus long term O&M cost profile
- Hard to estimate at early stages, expert bias inform & refine

Arcadis. Designing a world for the next generation.