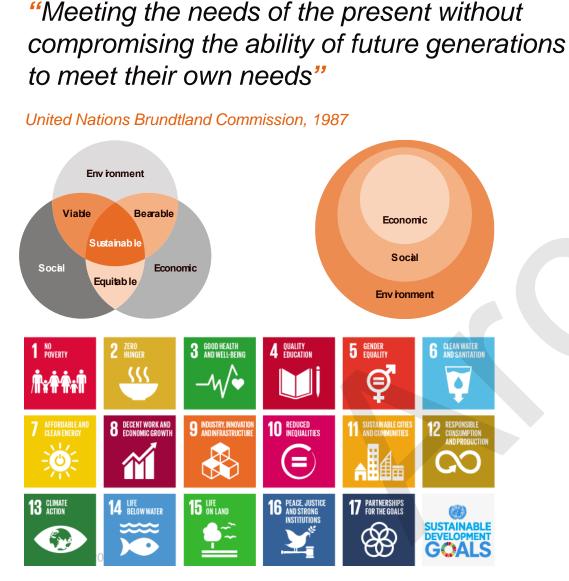
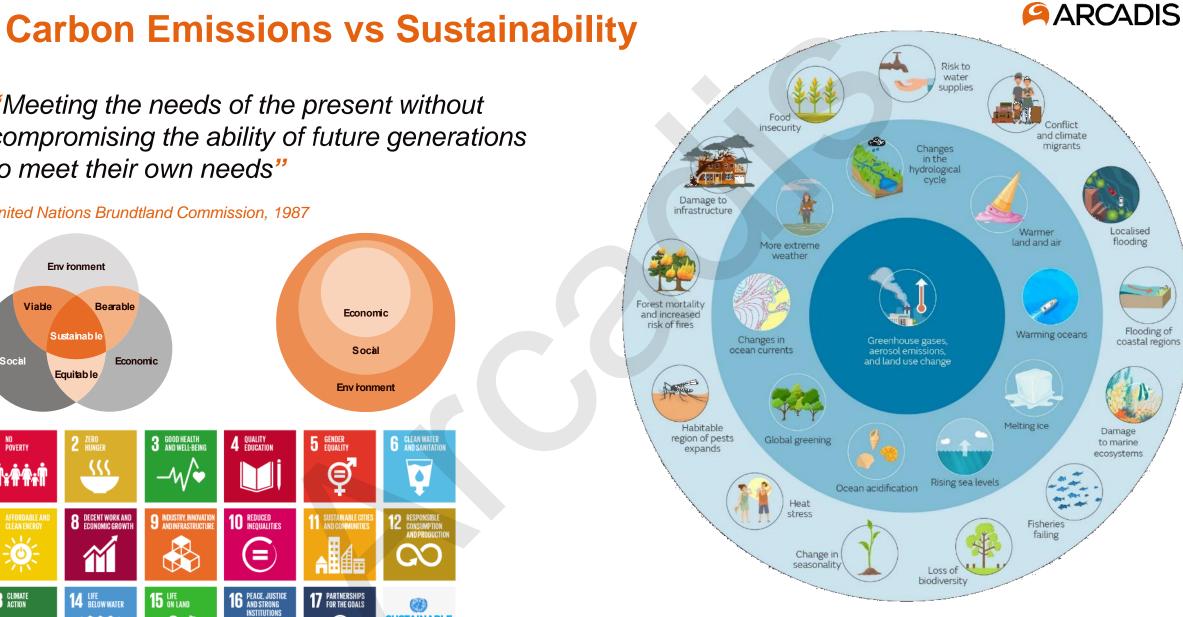

ARCADIS

Dr Jay Hall


Arcadis UK ER Sustainability Manager


April 2024

Sustainability Principles

Sustainability Principles

Source: UK Met Office

Scope 1, 2 and 3 Emissions	CO ₂ CH ₄	HFCs SF6		
	Scope 3	Scope 1 Scope 3		
	Scop	22		
	Leased assets energy	ly		
The GHG	Employee commuting	Company facilities Processing of sold products		
Protocol	Purchased goods / services	g & Use of sold	Source: Circularise	
Capital Transpoty goods distributio	y & Fuel / Waste Business Purcha on energy Waste travel stear	Investments Fran	nchises End of life treatment	
UPS	TREAM ACTIVITIES REPO	RTING COMPANY DOWNSTREAM AC	CTIVITIES	
Scope 3 - Upstream	Scope 2	Scope 1	Scope 3 - Downstream	
Indirect	Direct	Direct	Indirect	
From goods / services purchased by company	From energy purchased by company	Emissions owned / controlled by company	From goods / services sold by company	
Capital goods Consumables Waste disposal	Electricity, heating, cooling	Fuel in company vehicles Spills and contamination events (fugitive emissions)	Transport of products Use of products	
Challenging to calculate	Easy to calculate	Easy to calculate	Very difficult to calculate	
Need to collect data from supply chain Requires collaboration and data sharing across multiple entities	Typically has a standard grid value calcu annually per country/territory	ated Chemicals have a standard GHG emissions profile for combustion or degradation	May require assumptions and data from customers or market research to estimate emissions from use and disposal	

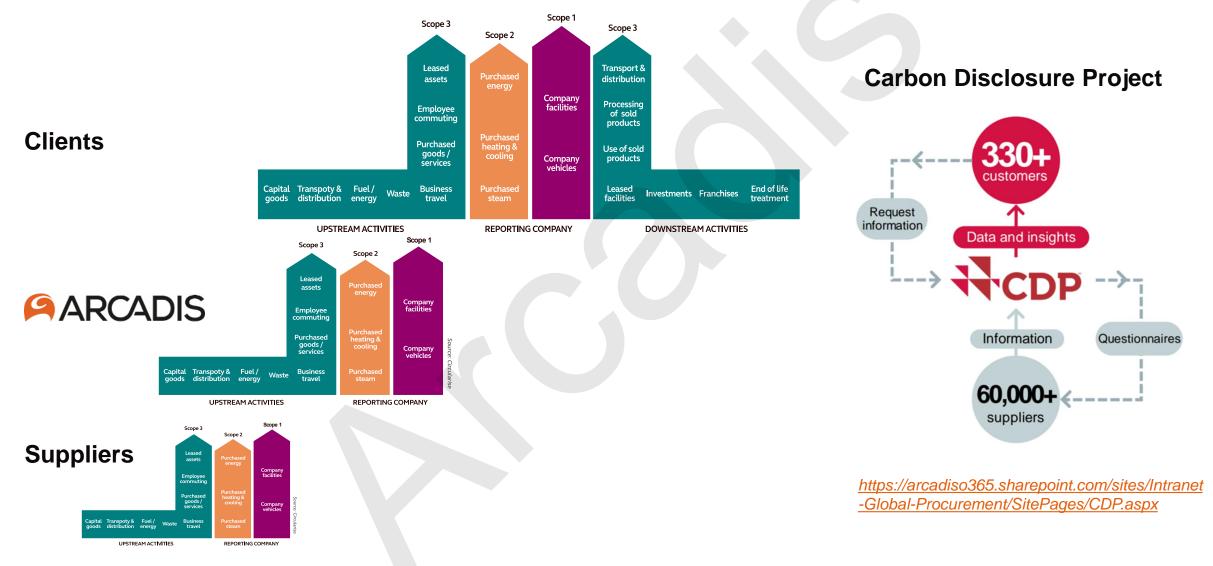
Net Zero Targets

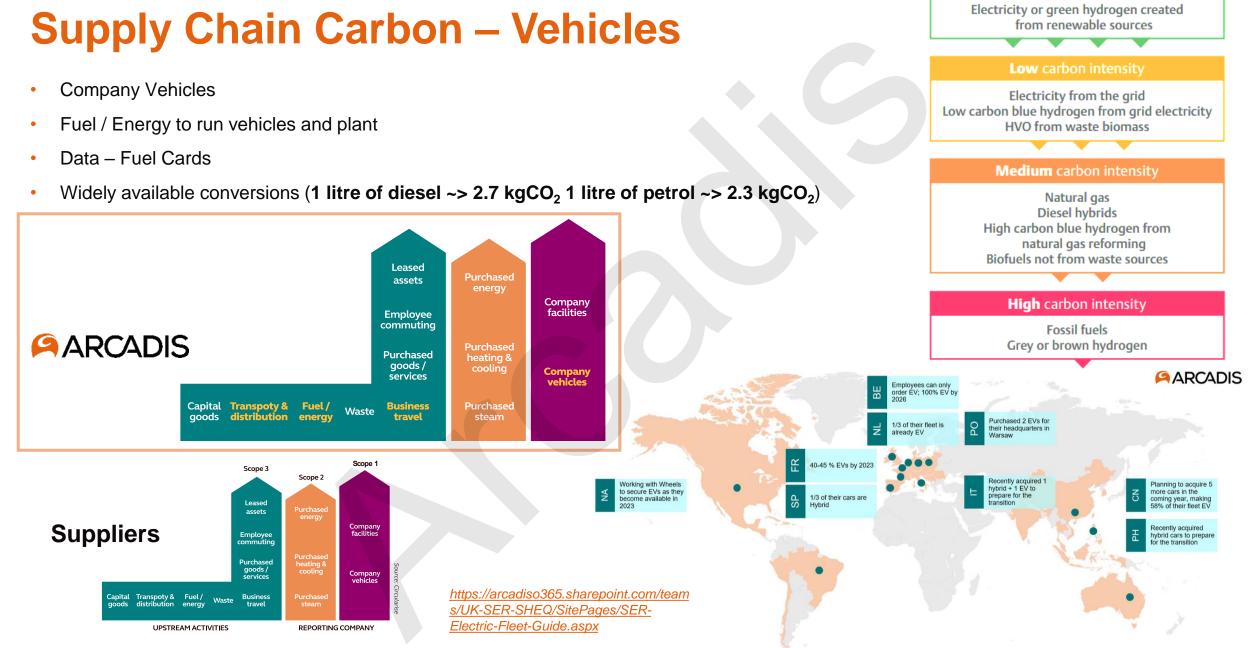
	Carbon Neutrality	Net Zero		CH4 N20	HFCs Scope 1	SF6	NF ₃
Boundary	Minimum requirement of Scope 1 & 2 Scope 3 encouraged but not mandatory	Must cover Scope 1, 2 & Upstream Scope 3	Scope 3 Leased assets	Scope 2 Purchased energy	Company facilities	Scope 3 Transport & distribution Processing	
Ambition	No requirement for a company to reduce emissions	Must be reducing emissions along a 1.5°C trajectory across Scope 1, 2 & 3	The GHG Protocol Protocol	ng Purchased heating & cooling	Company vehicles	of sold products Use of sold products	Source: Circulari
Guidance	PAS 2060	No specific guidance (yet) Needs a combination of standards, frameworks, and best practices Incl. PAS 2060, PAS 2080 , SBTi	Capital Transpoty & Fuel/ Waste Business goods distribution energy Waste travel	steam	G COMPANY	facilities	Investments Franchises End of life treatment
Diagram	Take out what you put in	Reduce then remove	100 Gt				4.1 − 4.8 °C →expected emissions in a baseline scenario if countries had not implemented climate reduction policies.
	EMISSIONS SEQUESTRATION & OFFSETTING	Paris 1.5°C Seguestration & OFFSETTING	50 Gt Greenhouse gas emissions up to the present				Current policies 2.7 - 3.1 °C + omissions with current climate policies in place result in warming of 2.7 to 3.1°C by 2100. • Pledges & targets (2.4 °C) + emissions if all countries delivered on reduction pledges result in warming of 2.4°C by 2100.
		& OFF	0				2°C pathways 1.5°C pathways

Carbon Literacy IT Dne Ton of CO ₂ -1.4 - 1.8 T/yr -13 T/yr								
<1 g	~12 - 60 2 kg ~10 kg	kg/yr ~100 kg	~1 T	~10 T	~100 T			
1 full day streaming 4k Netflix carton of eggs 1/2 camembert	 A return Eurostar trip (per passenger) ½ hour drive 1 steak or cheeseburger 1 household waste bin to landfill 	one-way flight within Europe (per passenger) Set of new car tires Half a bitcoin transaction	 A return flight from London to NY (per passenger) A long-haul flight to Asia Arcadis UK annual energy use per FTE 	Average UK / EU carbon footprint per person per yearDriving a car once around the worldPowering a superyacht for 1 day	 A commercial space flight (per billionaire) Wildfires across 2-8 acres of land Building a typical 3- bed house (traditional construction) 			

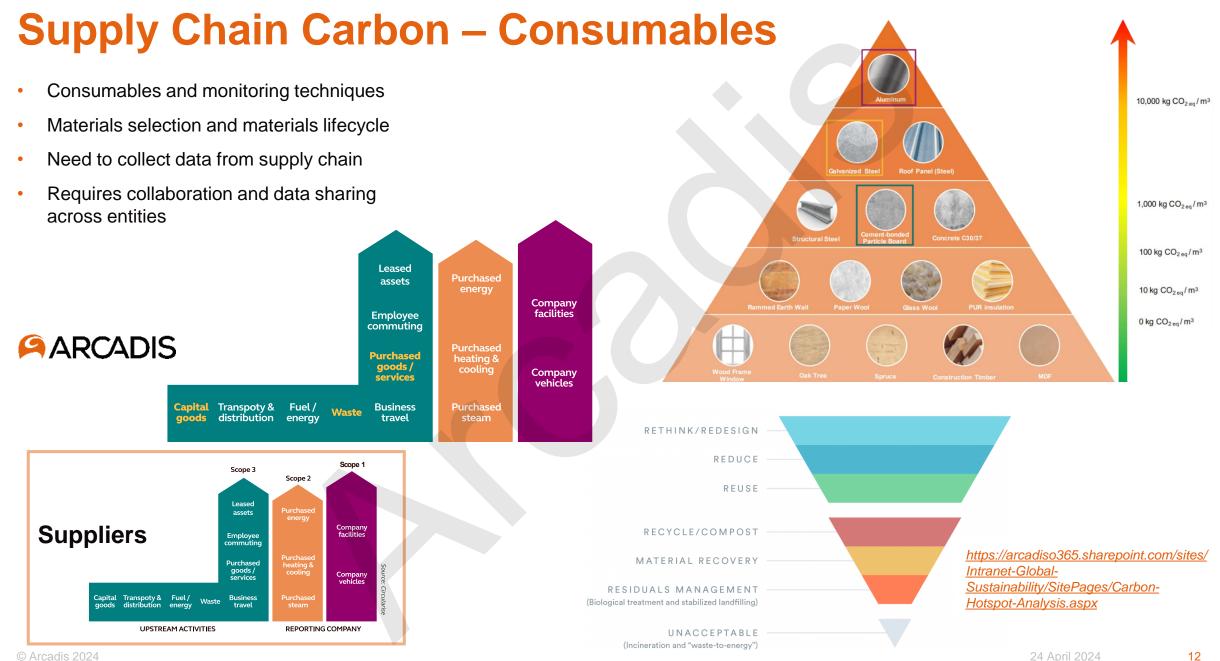
Arcadis Sustainability Goals and Baselining

Sustainability

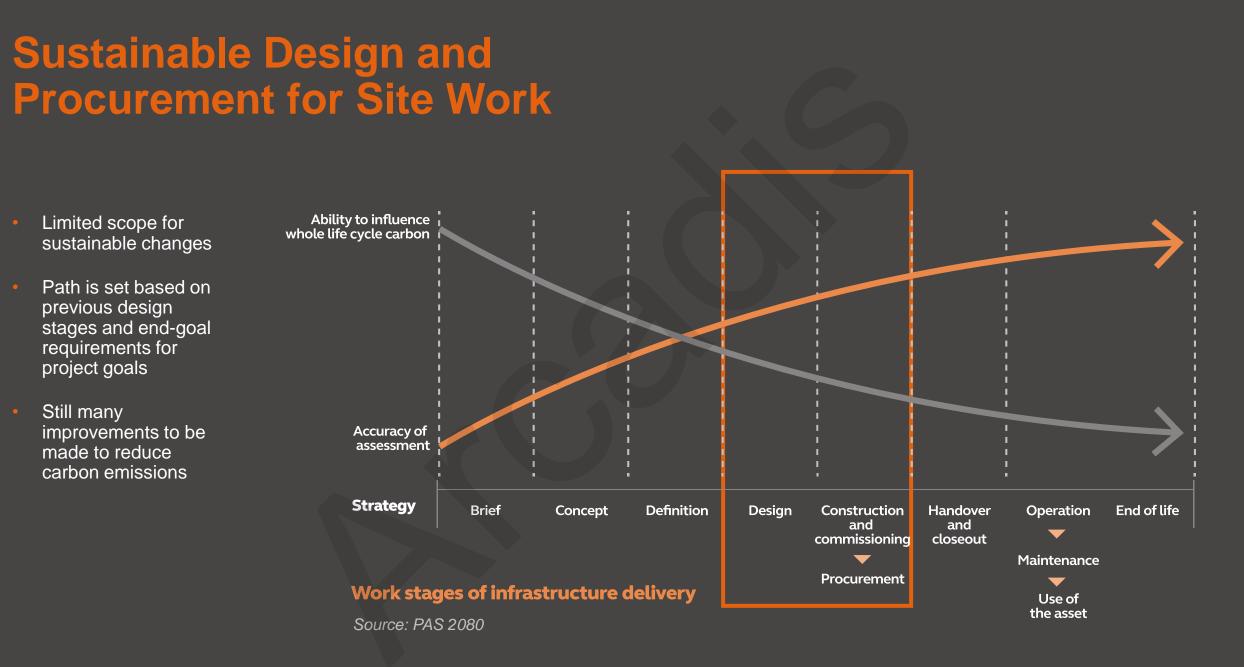

A Planet Positive Future



ARCADIS


9

Supply Chain Carbon – Scope 3 emissions per spend



Zero carbon

Sustainable Sitework

²³⁰ 220 210 200 190 180 170 160 150 140 130 120 ¹¹⁰

Design – Driving

Reduce Driving

- Efficient Resourcing
- Consider site worker home location as well as office location
- Overnight stays rather than repeated commutes


Saves ~ 20 to 40 kgCO₂ per 60 mile trip (1.5 hour drive)

- Vehicle pooling
- Using public transport for equipment-light site visits (Walkovers, surveys, logging etc)
- Consider on-site facilities for overnight storage of samples/charging of equipment to enable public transport commuting or fewer courier collections

Emissions from different modes of transport

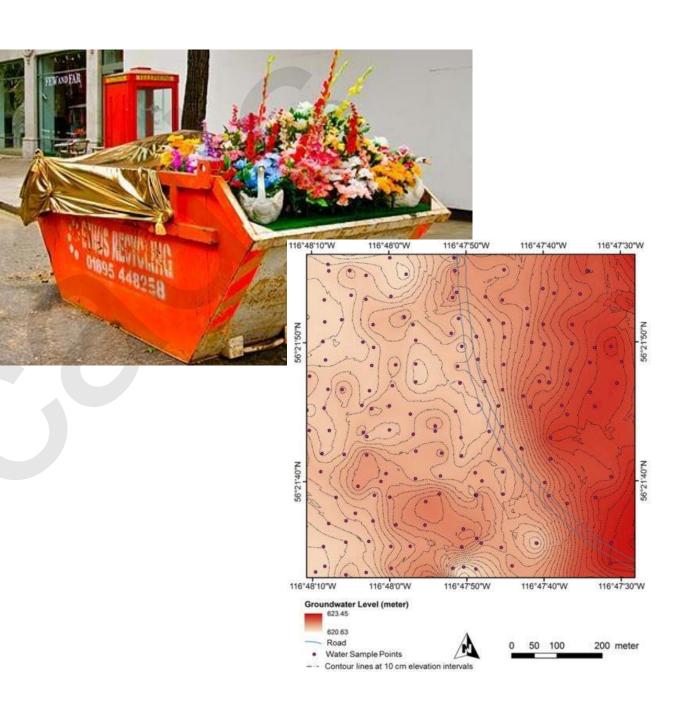
Emissions per passenger per km travelled

CO2 emissions Secondary effects from high altitude, non-CO2 emissions

Note: Car refers to average diesel car

Source: BEIS/Defra Greenhouse Gas Conversion Factors 2019

BBC

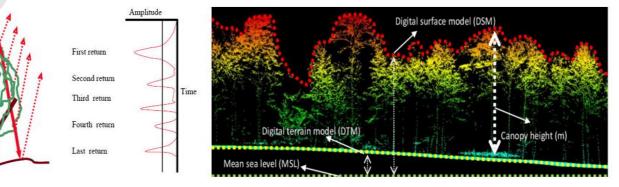


Design – Scope of Work

Reduce Intrusive Works:

1 m³ of soil sent to landfill produces ~35 kg of CO_2 + the fuel to transport

- Maximize the value of existing and historical boreholes
 - FieldNow® digital borehole logging & predictive models
 - Digitized historical borehole records (GeODin <~ talk to Denny)
- Reducing intrusive works (don't just drill)
 - Co-ordinate with other teams can scopes of works be combined?
 - Remote sensing / remote scanning
 - CPTs
 - Down-hole geophysics
- Rail Freight for soil transport

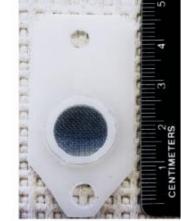


Design – Scope of Work

Reduce Veg Clearance:

- Assess ecological value of vegetation
- Minimise disturbance to sensitive habitats
- Remote Sensing
 - Using drones (air or waterborne)
 - Satellite data next-gen LiDAR penetrates vegetation
- Telemetry based monitoring and instrumentation
 - water levels, remote slope monitoring

Design – Monitoring


Monitoring Techniques

- **Continuous Monitoring & Telemetry** •
 - Divers/Loggers can store months of • groundwater level and baro readings
 - Reduces driving fewer site visits ٠

One case study reduced driving by 60% per month

- No Purge techniques rather than Low Flow ۲
 - E.g. passive diffusion bags or snap samplers • left in monitoring wells (only certain CoC – good for PFAS)
 - Talk to Wouter for more information •
 - Reduces well-purge volumes ٠
 - Reduces plastic waste compared to LF tubing •

Procurement – Welfare

Eco Welfare Units

- Growing list of suppliers different types
 available
- Not all are created equal
 - Solar + Hydrogen version is zero carbon
 - Solar + Diesel version is lower carbon (up to 75% less)
- Also address noise complaint issues no generators running at night
- Long lead in and hard to book (not many units available)
- Addresses operational carbon (need to understand break-even point for manufacture)

1 Jerry can of diesel produces ~50 kgCO2 when burned

© Arcadis 2024

Hydrogen + Solar =

ZERO

Fcosmar

Procurement -Generators

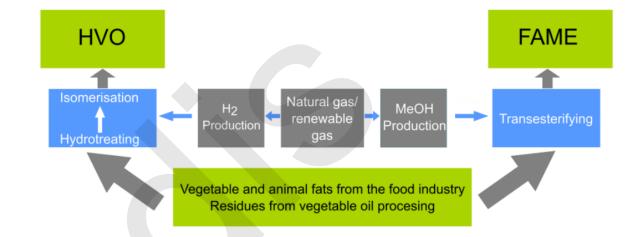
Eco Generators

- Solar + Diesel
 - ~65 75% fuel reduction
- Hydrogen
 - Run on hydrogen cannisters similar to camping gas
 - 75% cheaper to run than equivalent diesel generator
- Hybrid Power
 - Uses heat from diesel generators to charge internal batteries
 - 40 50% fuel reduction (compared to 24/7 running)

Diesel generators produce 0.7 – 1.1 kgCO₂ per kWh

~65 kg CO_2 per day for a typical welfare cabin

Can operate in ULEZ sites

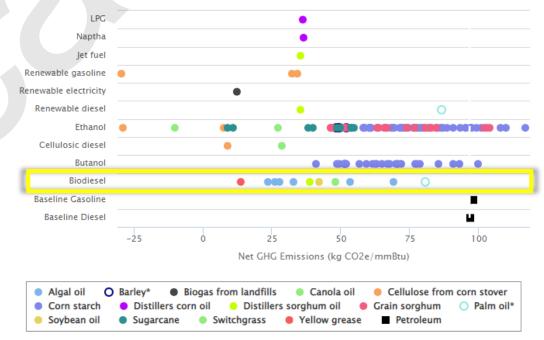

Can power static units or electric plant

Lower noise (for compliance regulations

Procurement - Fuel

HVO and FAME Biofuels

- Replacement of mineral diesel in rigs and generators
- Drop-in diesel replacements
 - FAME = fatty acid methyl ester
 - Already comprises up to 7% of B7 diesel at the pump - can go up to 20% from specialist suppliers
 - Engine stalls at lower temperatures
 - HVO = hydrotreated vegetable oil
 - ~30% more expensive than diesel
 specialist suppliers only
- Up to 90% lifecycle CO₂ reduction vs mineral diesel
 - Exact reduction varies with feedstock source and transportation -
 - Issues around engine compatibility, suppliers and fuel storage


Lifecycle GHG Emissions by Feedstock and Fuel Type

≡

EPA

Source:

(Click in the Legend to View Results by Feedstock)

Case Study Award Winning Sustainable Ground Investigation

Shell Sceptre – Sustainable Solutions

Background:

- Off-grid site (no power supply)
- Typically relies on diesel generators which are carbon intensive and cause noise and air pollution
- Is there a way to make this more sustainable?

Solution:

- Work with suppliers to understand sustainable options
- Rank options by carbon intensity
- Select the least carbon intensive viable options

Result:

 Approximately 26T CO₂ emissions saved by utilizing sustainable and lower-carbon intensive welfare and equipment provisions during the 12 week site drilling program.

Zero carbon Electricity or green hydrogen created from renewable sources Low carbon intensity Electricity from the grid Low carbon blue hydrogen from grid electricity HVO from waste biomass Medium carbon intensity Natural gas **Diesel hybrids** High carbon blue hydrogen from natural gas reforming Biofuels not from waste sources

High carbon intensity

Fossil fuels Grey or brown hydrogen

Shell SGWS Sustainability Award 1Q2023

SGWS SUSTAINABILITY AWARD This Award is presented to Arcadis UK: Shell Sceptre - Sustainable Welfare Solutions in recognition of the significant contribution made in conducting and promoting sustainable activities associated with our Soil and Groundwater Program. David Dollard Saintkaurent GM. Sail and Groundwater Solutions

Shell Sceptre – Sustainable Solutions

Welfare

- Solar / diesel hybrid welfare
- Welfare unit with roofmounted photovoltaic panels which recharge an onboard battery to power lighting and plug sockets
- saving 660kg CO₂ when compared to standard units

Solar / methanol fuel cell CCTV

CCTV

saving approximately **4,200kg CO₂** when compared with non solar powered CCTV requiring a diesel generator.

Plant

- Electric pallet mover
- recharged using the welfare solar electric supply
- negating the need for a telehandler
- reducing potential emissions by approximately 20 TCO₂
- PLUS a significant cost saving

Fuel

- Hydrotreated Vegetable Oil (HVO) used to refuel drilling rigs, remediation
- generator and tracked dumper which saved up to 1,131 kg CO₂

Conclusion and Next Steps

Conclusions

Sustainability in Projects

- Understand the basics terminology and targets
- Lots of simple improvements to be made to reduce carbon emissions
- Start with the easy wins with the biggest impact
 - Travel
 - Welfare and fossil fuel generators
 - Switching to **RECYCLED** materials
 - Telemetry and remote sensing / surveying

Expedition DNA Sustainability Basecamp

Multilevel Whole of Life Carbon Training Sustain Abilities (powered by the Lovinklaan Foundation) Tier 2 Practitioner Level and Tier 3 Software training coming in Q3

https://arcadiso365.sharepoint.com/:u:/r/sites/Intranet-Global-Sustainability/SitePages/Whole-of-Life-Carbon-Multi-Level-Training.aspx?csf=1&web=1&e=Kg9x9P

2019 **Baseline** year for corporate -wide carbon emissions

Offsetting 100% of Material Scope 1, 2 & 3 emissions

2020

2021 Sourcing 100%

Science Based renewable **Targets initiative** electricity in offices globally

2022

has approved

targets

Supply Chain engagement with Carbon Disclosure Project to track Scope 3

2023-2024

emissions

2025

by 35% and flights

by 50%

Reduce Scope 1 & 2 emissions by 45% **Reduce Scope 3** travel emissions

2027 Carbon removals

covering 100% of

Material Scope 1,

2 & 3 emissions

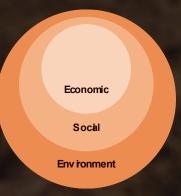
2028

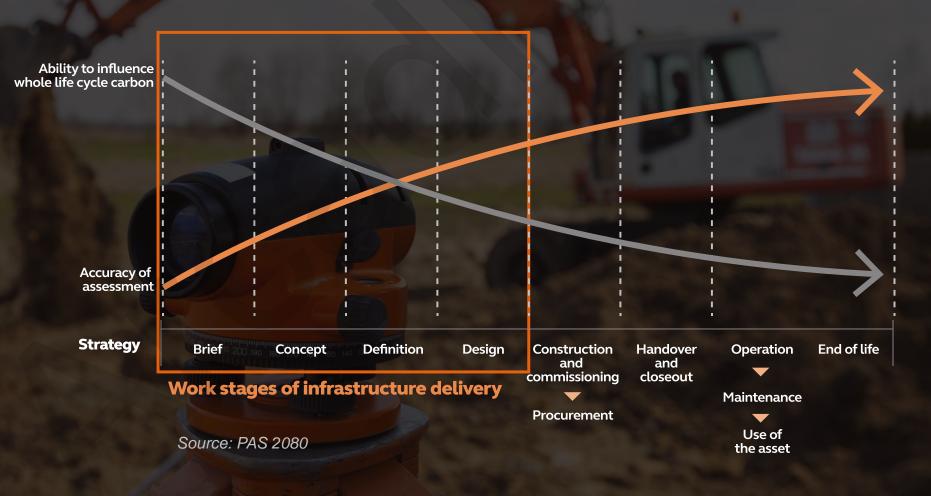
Halve overall

Scope 1, 2 & 3

emissions

2030


Transition fleet to electric vehicles


Reach net zero emissions

2035

Greatest success through early adoption of sustainable principles

- Retrofitting a scope of works is always more challenging
- Involvement in discussion with clients AND regulators to provide sustainable solutions as early as possible
- Multicriteria analysis e.g. **SuRF framework** to support decision making

Arcadis. Improving quality of life.