ARCADIS

Geochemical Batte Aquifer Tuning at CVOC in situ remediation

Dr. Marcus Alter, Laura Simone (Arcadis Germany)

Introduction

CSM for in situ dechlorination – battery model

Innovative in-situ remediation concepts for chlorinated solvents (CVOC) remain crucial despite decades of experience and advanced technological developments in the field. This is due to the large number of contaminated sites and the significant duration and cost of ongoing remediation efforts. In this context, the focus is shifting from process-related aspects to the more sustainable concept of "aquifer tuning".

Biotic - Abiotic Conceptual Model for Electron Transfer and Tuning

The term "aquifer tuning" refers to the alignment of planning and optimization of in-situ remediation measures with site- and process-specific conditions, considering natural conditions. The goal is to achieve an efficient use of substrates and minimize the technical effort required for their application.

Hypothesis

- Secondary electron donator: EPS (extra polymer substances released by bacteria) and previously formed biomass decay
- Support of a pool of reduced species of electron acceptors like reactive mineral species (iron sulphide mineral precipitates, iron-bearing minerals)
- (sometimes): longer persistence of reagents (molasses, vegetable oil)
- Less rebound than other methods like P&T or ISCO

Role	Process	Description	Compounds of Interest	Background/Baseline	Active Treatment	: (Early) Active Trea	itment Ti	ransition to Passive	
Geochemistry				Oxic	Anoxic	Anoxic	A	noxic	
ulk reductant	Serves a mediato	s electron donor to	Organic carbon (nominal, organic carbon substrate	Limited electron donation	n Increasing electro	n High degre	e of electron Si	ustained electron onation (from electron	
	acceptor	-	biomass recycling)		donation	donation	sł	nuttling and/or biomas	
			Iron (magnetite, green rust, iron sulfides, ferrous iron				re	ecycling)	
			species)						
			Sulfur (hydrogen sulfides and polysulfides)						
			Titanium citrate						
lediator	Transfer	s electrons	Nominal organic matter	Limited	Active electron sh	uttling Active elec	tron shuttling A	ctive electron shuttling	
	donor ar	nd acceptor;	Mixed valents state iron	shuttling					
	dependi can serv	ng on redox state, e as an electron	minerals (magnetic, green rust. ferrous hydroxide)						
	donor to	chlorinated	Metallocoenzymes						
	compou electron	nds or as an acceptor from	(vitamin B ₁₂)						
	bulk red	uctant(s)							
.ectron acceptor	Accepts	electrons from	Oxygen	O ₂ reduction					
	electron	donor (either bulk	Nitrate		NO_3 - reduction $Mn(IV)$ reduction	Mp(IV) redu	iction M	Mn(IV) reduction	
	reducta	it of mediatory	Iren						
			Chlorinated compound		Chlororespiration	Chlororesp	iration C	Chlororespiration	
			Sulfate		SO ₄ ²⁻ reduction	SO ₄ ²⁻ reduc	tion So	O ₄ ²⁻ reduction	
			Carbon dioxide		rietilanogenesis	riethanoge		lethanogenesis	
on sulfide mineral ormation				No	Yes	Yes	Ye	25	
attery strength	Relative	size of available						()	
							Source	:: Horst et. Al 2022 (GW	
			c • • • • • • • •						
		Heat Map	for Assessing Likelihood and	Optimal Conditions for Fe	SX Formation Within II	n Situ Reaction Zones			
arameter			Conditions Indica	ating Potential Presence of	Iron Sulfide Minerals		Example Applicati	on	
arameter escription	Parameter ID	Approximat Specialty Aı Vendors	te Costs, Favorable nalyses	Possible	Unfavorable	In Situ Reactive Zone (Ideal Conditions)	Fringe of In Situ Reactive Zone	Background (Nor Ideal Conditions)	
Field measurements: low cost, poor accuracy	GW DO (mg/L)	NA	<0.1	<1, >0.1	>1	0.52	0.98	2.62	
	GW ORP (mV)	NA	<-50	<150, >-50	>150	-277	-104	86	
Geochemical evidence (proxy): easy/fast sampling; low costs; good	GW-dissolved F (mg/L)	e \$30	>20	<20, >1	<1	3.7	23.8	0.0559	
	GW ∆ sulfate (r	ng/L) \$25	>200	<200, >25	<25	870	158	227	
ccuracy; low recision	GW sulfide (mg	J/L) \$30	>1	Detectable		7.15	0.0426	0.0905	
	GW methane (mg/L) \$65		>5	<5, >0.5	<0.5	0.02	0.47	0.0033	
	GW acetylene (µg/L) \$65		Detectable			0.89		<0.28	
	GW TOC (mg/L) \$40	>20	<20, >5	<5	35.3	89.7	21.9	
eochemical vidence	Black-tinted Min Trap	n- \$300 per saı (Microbial In	mpler Significant present sights) of black precipitate	ce Limited distribution es of gray/black	Absence of black precipitates	Significant presence of black precipitates	Significant present of black precipitate	Absence of black precipitates	
eployment/ ampling times;	Min-Trap total F (mg/kg)	Fe \$30	>100	>50	<50	78	97	107	
JUCI CUSLS, YUUU	-				0.05	4.00	1.02	0.00	

Example in Germany

- Long lasting effect of molasses infiltration in the test field area
- Second infiltration: lower concentration of molasses and less corresponding DOC-effect
- Effective dechlorination around injection well, no rebound!

	Fe²+)/ (WAS-Total Fe + SAS-Total Fe)							
	Min-Trap AMIBA: AVS+CrES (if SAS Fe ²⁺ detected) (mg/ kg)		>20	Detectable	Non-detectable	48	26.3	11.23
	Min-Trap SEM-EDS	\$1200-\$1800 per sample	Extensive co- location of Fe and S	Limited co-location of Fe and S	No significant S	Extensive co- location of Fe and S	Limited co-location of Fe and S	Not analyzed
Microbiological evidence: fast sampling; high costs; good accuracy and precision	Iron-reducing bacteria and sulfate- reducing bacteria	\$300-600 individual targets \$750-\$950 per array	<1.00x10 ³	<1.00x10 ² - 1.00x10 ³	Non-detectable	8.83x10 ³ - 2.67x10 ⁶	6.17x10⁴−1.23x10⁵	Not analyzed

Success requirements

(WAS-Fe²⁺+ SAS-

precision

- Well-developed initial conceptual site model
- Intensive long-term monitoring, data harvesting for future applications